Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 2.959
Filtrar
1.
Proc Natl Acad Sci U S A ; 121(16): e2317978121, 2024 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-38593069

RESUMO

Mosquito-borne flaviviruses such as dengue (DENV) and Zika (ZIKV) cause hundreds of millions of infections annually. The single-stranded RNA genome of flaviviruses is translated into a polyprotein, which is cleaved equally into individual functional proteins. While structural proteins are packaged into progeny virions and released, most of the nonstructural proteins remain intracellular and could become cytotoxic if accumulated over time. However, the mechanism by which nonstructural proteins are maintained at the levels optimal for cellular fitness and viral replication remains unknown. Here, we identified that the ubiquitin E3 ligase HRD1 is essential for flaviviruses infections in both mammalian hosts and mosquitoes. HRD1 directly interacts with flavivirus NS4A and ubiquitylates a conserved lysine residue for ER-associated degradation. This mechanism avoids excessive accumulation of NS4A, which otherwise interrupts the expression of processed flavivirus proteins in the ER. Furthermore, a small-molecule inhibitor of HRD1 named LS-102 effectively interrupts DENV2 infection in both mice and Aedes aegypti mosquitoes, and significantly disturbs DENV transmission from the infected hosts to mosquitoes owing to reduced viremia. Taken together, this study demonstrates that flaviviruses have evolved a sophisticated mechanism to exploit the ubiquitination system to balance the homeostasis of viral proteins for their own advantage and provides a potential therapeutic target to interrupt flavivirus infection and transmission.


Assuntos
Aedes , Infecções por Flavivirus , Flavivirus , Infecção por Zika virus , Zika virus , Animais , Camundongos , Flavivirus/genética , Zika virus/genética , Ubiquitina/metabolismo , Ligases/metabolismo , Proteínas Virais/metabolismo , Mamíferos
2.
Viral Immunol ; 37(3): 167-175, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38574259

RESUMO

Zika virus (ZIKV) is an emerging flavivirus associated with several neurological diseases such as Guillain-Barré syndrome in adults and microcephaly in newborn children. Its distribution and mode of transmission (via Aedes aegypti and Aedes albopictus mosquitoes) collectively cause ZIKV to be a serious concern for global health. High genetic homology of flaviviruses and shared ecology is a hurdle for accurate detection. Distinguishing infections caused by different viruses based on serological recognition can be misleading as many anti-flavivirus monoclonal antibodies (mAbs) discovered to date are highly cross-reactive, especially those against the envelope (E) protein. To provide more specific research tools, we produced ZIKV E directed hybridoma cell lines and characterized two highly ZIKV-specific mAb clones (mAbs A11 and A42) against several members of the Flavivirus genus. Epitope mapping of mAb A11 revealed glycan loop specificity in Domain I of the ZIKV E protein. The development of two highly specific mAbs targeting the surface fusion protein of ZIKV presents a significant advancement in research capabilities as these can be employed as essential tools to enhance our understanding of ZIKV identification on infected cells ex vivo or in culture.


Assuntos
Aedes , Flavivirus , Infecção por Zika virus , Zika virus , Animais , Recém-Nascido , Humanos , Proteínas do Envelope Viral , Anticorpos Monoclonais , Anticorpos Neutralizantes , Anticorpos Antivirais
3.
Pestic Biochem Physiol ; 200: 105809, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38582581

RESUMO

Culex quinquefasciatus is the main vector of lymphatic filariasis in Brazil, which present resistance to commercial insecticides. Nowadays, essential oils (EOs) exhibiting larvicidal activity, such as those derived from Piper alatipetiolatum, provide a promising alternative for vector control, including Culex species. This study aimed to investigate the larvicidal activity and the oxidative stress indicators of the EO from P. alatipetiolatum in Cx. quinquefasciatus larvae. The EO was extracted from P. alatipetiolatum leaves using the hydrodistillation method, resulting in a yield of 7.2 ± 0.1%, analysed by gas chromatography coupled with spectrometry and gas chromatography coupled with flame ionization detector (GC-MS and GC-FID), and evaluated against Cx. quinquefasciatus larvae. Reactive Oxygen and Nitrogen Species (RONS), Catalase (CAT), glutathione-S-transferase (GST), acetylcholinesterase (AChE), and Thiol levels were used as oxidative stress indicators. Analysis by CG-MS and CG-FID revealed that the main compound in the EO was the oxygenated sesquiterpene ishwarone, constituting 78.6% of the composition. Furthermore, the EO exhibited larvicidal activity, ranging from 26 to 100%, with an LC50 of 4.53 µg/mL and LC90 of 15.37 µg/mL. This activity was accompanied by a significant increase in RONS production, alterations in CAT, GST, AChE activity, and thiol levels compared to the control groups (p < 0.05). To the best of our knowledge, this is the first report describing the larvicidal activity and oxidative stress induced by the EO from P. alatipetiolatum against Cx. quinquefasciatus larvae. Therefore, we propose that this EO shows promise as larvicidal agent for the effective control of Cx. quinquefasciatus larvae.


Assuntos
Aedes , Culex , Culicidae , Inseticidas , Óleos Voláteis , Piper , Animais , Óleos Voláteis/farmacologia , Óleos Voláteis/química , Larva , Acetilcolinesterase , Mosquitos Vetores , Inseticidas/farmacologia , Inseticidas/química , Compostos de Sulfidrila/farmacologia , Extratos Vegetais/farmacologia , Folhas de Planta
4.
Arch. argent. pediatr ; 122(2): e202310144, abr. 2024. tab, ilus
Artigo em Inglês, Espanhol | LILACS, BINACIS | ID: biblio-1537966

RESUMO

El dengue es una enfermedad viral transmitida por la picadura del mosquito Aedes aegypti. El comportamiento del dengue en Argentina es epidémico; la mayoría de los casos se observan en los meses de mayor temperatura. Hasta la semana epidemiológica (SE) 20/2023, se registraron en Argentina 106 672 casos; se vieron afectadas 18 de las 24 provincias que conforman el país. Dentro de los principales grupos de riesgo, se incluyen los menores de 2 años. Reconocer los signos, síntomas e identificar los factores de riesgo es fundamental para el manejo de casos con mayor riesgo de gravedad. Presentamos el caso de una paciente de 32 días de vida que se internó por síndrome febril sin foco, con diagnósticos diferenciales de meningitis viral y sepsis, evolucionó con leucocitosis, plaquetopenia, hipoalbuminemia, asociado a exantema y edemas. Se llegó al diagnóstico de dengue por la clínica, epidemiologia e IgM positiva.


Dengue fever is a viral disease transmitted by the Aedes aegypti mosquitoes. In Argentina, dengue fever is an epidemic disease; most cases are reported during the hot months.Until epidemiological week (EW) 20/2023, 106 672 cases were reported across 18 of the 24 provinces of Argentina. Children younger than 2 years are among the main groups at risk. Recognizing signs and symptoms and identifying risk factors is fundamental for the management of cases at a higher risk of severity. Here we describe the case of a 32-day-old female patient who was hospitalized due to febrile syndrome without a source, who had a differential diagnosis of viral meningitis and sepsis and progressed to leukocytosis, thrombocytopenia, hypoalbuminemia in association with rash and edema. The diagnosis of dengue fever was established based on clinical, epidemiological, and positive IgM data.


Assuntos
Humanos , Animais , Feminino , Lactente , Aedes , Dengue/complicações , Dengue/diagnóstico , Dengue/epidemiologia , Argentina , Fatores de Risco , Diagnóstico Diferencial
5.
Biomolecules ; 14(3)2024 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-38540733

RESUMO

Neuropeptides are the main regulators of physiological, developmental, and behavioural processes in insects. Three insect neuropeptide systems, the adipokinetic hormone (AKH), corazonin (Crz), and adipokinetic hormone/corazonin-related peptide (ACP), and their cognate receptors, are related to the vertebrate gonadotropin (GnRH) system and form the GnRH superfamily of peptides. In the current study, the two signalling systems, AKH and ACP, of the yellow fever mosquito, Aedes aegypti, were comparatively investigated with respect to ligand binding to their respective receptors. To achieve this, the solution structure of the hormones was determined by nuclear magnetic resonance distance restraint methodology. Atomic-scale models of the two G protein-coupled receptors were constructed with the help of homology modelling. Thereafter, the binding sites of the receptors were identified by blind docking of the ligands to the receptors, and models were derived for each hormone system showing how the ligands are bound to their receptors. Lastly, the two models were validated by comparing the computational results with experimentally derived data available from the literature. This mostly resulted in an acceptable agreement, proving the models to be largely correct and usable. The identification of an antagonist versus a true agonist may, however, require additional testing. The computational data also explains the exclusivity of the two systems that bind only the cognate ligand. This study forms the basis for further drug discovery studies.


Assuntos
Aedes , Hormônios de Inseto , Neuropeptídeos , Oligopeptídeos , Ácido Pirrolidonocarboxílico/análogos & derivados , Febre Amarela , Animais , Ligantes , Modelos Químicos , Filogenia , Evolução Molecular , Neuropeptídeos/metabolismo , Hormônio Liberador de Gonadotropina/genética , Hormônio Liberador de Gonadotropina/metabolismo
6.
Artigo em Inglês | MEDLINE | ID: mdl-38458419

RESUMO

Insect Malpighian tubules contribute to Ca2+ homeostasis via Ca2+ storage in intracellular compartments, Ca2+ secretion into the tubule lumen, and Ca2+ reabsorption into the hemolymph. A plasma membrane Ca2+-ATPase (PMCA) is hypothesized to be a Ca2+-transporter involved in renal Ca2+ transport of insects, however few studies have investigated its immunochemical expression in Malpighian tubules. Here we characterized the abundance and localization of PMCA-like immunoreactivity in Malpighian tubules of adult female mosquitoes Aedes aegypti using an antibody against Drosophila melanogaster PMCA. Western blotting revealed expression of a relatively abundant 109 kDa isoform and a relatively sparse 115 kDa isoform. Feeding mosquitoes 10% sucrose with 50 mM CaCl2 for 7 days did not affect PMCA immunoreactivity. However, at 24, 48, and 96 h post-blood feeding (PBF), the relative abundance of the 109 kDa isoform decreased while that of the 115 kDa isoform increased. Immunolabeling of Malpighian tubules revealed PMCA-like immunoreactivity in both principal and stellate cells; principal cell labeling was intracellular, whereas stellate cell labeling was along the basal membrane. Blood feeding enhanced immunolabeling of PMCA in stellate cells but weakened that in principal cells. Moreover, a unique apicolateral pattern of PMCA-like immunolabeling occurred in principal cells of the proximal segment at 24 h PBF, suggesting potential trafficking to septate junctions. Our results suggest PMCA isoforms are differentially expressed and localized in mosquito Malpighian tubules where they contribute to redistributing tubule Ca2+ during blood meal processing.


Assuntos
Aedes , Feminino , Animais , Aedes/metabolismo , Adenosina Trifosfatases/metabolismo , Túbulos de Malpighi/metabolismo , Cálcio da Dieta/metabolismo , Cálcio da Dieta/farmacologia , Drosophila melanogaster , Membrana Celular , Isoformas de Proteínas/metabolismo
7.
PeerJ ; 12: e17038, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38529314

RESUMO

The mosquito Aedes aegypti, known to transmit important arboviral diseases, including dengue, chikungunya, Zika and yellow fever. Given the importance of this disease vector, a number of control programs have been proposed involving the use of the sterile insect technique (SIT). However, the success of this technique hinges on having a good understanding of the biology and behavior of the male mosquito. Behavioral responses of Ae. aegypti male populations developed for SIT technology were tested under laboratory conditions against chemical and natural irritants and repellents using an excito-repellency (ER) chamber. The results showed that there were no significant behavioral escape responses in any of the radiation-sterilized male Ae. aegypti test populations when exposed to citronella, DEET, transfluthrin, and deltamethrin, suggesting that SIT did not suppress the expected irritancy and repellency (avoidance) behaviors. The type of information reported in the current study is vital in defining the effects of SIT on vector behavior and understanding how such behavior may influence the success of SIT technology with regard to other vector control interventions.


Assuntos
Aedes , Infertilidade Masculina , Repelentes de Insetos , Infecção por Zika virus , Zika virus , Masculino , Humanos , Animais , Irritantes/farmacologia , Mosquitos Vetores/fisiologia , Repelentes de Insetos/farmacologia , Infertilidade Masculina/prevenção & controle
8.
PLoS Genet ; 20(3): e1011196, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38466721

RESUMO

Hematophagous mosquitoes require vertebrate blood for their reproductive cycles, making them effective vectors for transmitting dangerous human diseases. Thus, high-intensity metabolism is needed to support reproductive events of female mosquitoes. However, the regulatory mechanism linking metabolism and reproduction in mosquitoes remains largely unclear. In this study, we found that the expression of estrogen-related receptor (ERR), a nuclear receptor, is activated by the direct binding of 20-hydroxyecdysone (20E) and ecdysone receptor (EcR) to the ecdysone response element (EcRE) in the ERR promoter region during the gonadotropic cycle of Aedes aegypti (named AaERR). RNA interference (RNAi) of AaERR in female mosquitoes led to delayed development of ovaries. mRNA abundance of genes encoding key enzymes involved in carbohydrate metabolism (CM)-glucose-6-phosphate isomerase (GPI) and pyruvate kinase (PYK)-was significantly decreased in AaERR knockdown mosquitoes, while the levels of metabolites, such as glycogen, glucose, and trehalose, were elevated. The expression of fatty acid synthase (FAS) was notably downregulated, and lipid accumulation was reduced in response to AaERR depletion. Dual luciferase reporter assays and electrophoretic mobility shift assays (EMSA) determined that AaERR directly activated the expression of metabolic genes, such as GPI, PYK, and FAS, by binding to the corresponding AaERR-responsive motif in the promoter region of these genes. Our results have revealed an important role of AaERR in the regulation of metabolism during mosquito reproduction and offer a novel target for mosquito control.


Assuntos
Aedes , Receptores de Esteroides , Animais , Feminino , Humanos , Aedes/genética , Aedes/metabolismo , Ecdisona/metabolismo , Mosquitos Vetores/genética , Receptores Citoplasmáticos e Nucleares/genética , Receptores Citoplasmáticos e Nucleares/metabolismo , Homeostase/genética , Proteínas de Insetos/genética , Proteínas de Insetos/metabolismo
9.
Exp Parasitol ; 258: 108709, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38301765

RESUMO

Mosquitoes stand out as the most perilous and impactful vectors on a global scale, transmitting a multitude of infectious diseases to both humans and other animals. The primary objective of the current research was to assess the effectiveness of EOs from Ocimum tenuiflorum L. and Ocimum americanum L. in controlling Anopheles stephensi Liston. Culex quinquefasciatus Say and Aedes aegypti L. mosquitoes. The larvae, pupae and eggs of the mosquitoes were exposed to four different concentrations (6.25-50 ppm). The tested EOs resulted in >99-100 % mortality at 120 h for the eggs of all examined mosquito species. It also showed robust larvicidal and pupicidal activity with LC50 and LC90 values of 17-39, 23-60 ppm and 46-220, and 73-412 ppm against Aedes, Culex and Anopheles mosquito species, respectively, at 24 h of treatment. The Suitability Index or Predator Safety Factor demonstrated that the EOs extracted from O. tenuiflorum L. and O. americanum L. did not cause harm to P. reticulata, D. indicus (water bug), G. affinis and nymph (dragonfly). GC-MS analysis identified the major probable constituents of the oil, including Phenol, 2-Methoxy-4-(1-Propenyl)- (28.29 %); 1-Methyl-3-(1'-Methylcyclopropyl) Cyclopentene (46.46 %); (E,E,E)-3,7,11,15-Tetramethylhexadeca-1,3,6,10,14-Pentaene (18.91 %) and 1,3-Isobenzofurandione, 3a,4,7,7a-Tetrahydro-4,7-Dimethyl (33.02 %). These constituents may play a significant role in the mosquitocidal activity of the oil. The same results were identified in the formulation prepared from the EOs. This marks the first report confirming the successful utilization of EOs derived from O. tenuiflorum L. and O. americanum L. in mosquito population control initiatives.


Assuntos
Aedes , Anopheles , Culex , Inseticidas , Ocimum , Odonatos , Óleos Voláteis , Animais , Humanos , Óleos Voláteis/farmacologia , Óleos Voláteis/análise , Ocimum/química , Ocimum sanctum , Mosquitos Vetores , Inseticidas/análise , Larva , Extratos Vegetais/química , Folhas de Planta/química
10.
Environ Sci Pollut Res Int ; 31(13): 19575-19594, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38363508

RESUMO

Vector-borne diseases pose a significant public health challenge in economically disadvantaged nations. Malaria, dengue fever, chikungunya, Zika, yellow fever, Japanese encephalitis, and lymphatic filariasis are spread by mosquitoes. Consequently, the most effective method of preventing these diseases is to eliminate the mosquito population. Historically, the majority of control programs have depended on chemical pesticides, including organochlorines, organophosphates, carbamates, and pyrethroids. Synthetic insecticides used to eradicate pests have the potential to contaminate groundwater, surface water, beneficial soil organisms, and non-target species. Nanotechnology is an innovative technology that has the potential to be used in insect control with great precision. The goal of this study was to test the in vitro anti-dengue potential and mosquitocidal activity of Chaetomorpha aerea and C. aerea-synthesized Mn-doped superparamagnetic iron oxide nanoparticles (CA-Mn-SPIONs). The synthesis of CA-Mn-SPIONs using C. aerea extract was verified by the observable alteration in the colour of the reaction mixture, transitioning from a pale green colour to a brown. The study of UV-Vis spectra revealed absorbance peaks at approximately 290 nm, which can be attributed to the surface Plasmon resonance of the CA-Mn-SPIONs. The SEM, TEM, EDX, FTIR, vibrating sample magnetometry, and XRD analyses provided evidence that confirmed the presence of CA-Mn-SPIONs. In the present study, results revealed that C. aerea aqueous extract LC50 values against Ae. aegypti ranged from 222.942 (first instar larvae) to 349.877 ppm in bioassays (pupae). CA-Mn-SPIONs had LC50 ranging from 20.199 (first instar larvae) to 26.918 ppm (pupae). After treatment with 40 ppm CA-Mn-SPIONs and 500 ppm C. aerea extract in ovicidal tests, egg hatchability was lowered by 100%. Oviposition deterrence experiments showed that in Ae. aegypti, oviposition rates were lowered by more than 66% by 100 ppm of green algal extract and by more than 71% by 10 ppm of CA-Mn-SPIONs (oviposition activity index values were 0.50 and 0.55, respectively). Moreover, in vitro anti-dengue activity of CA-Mn-SPIONs has good anti-viral property against dengue viral cell lines. In addition, GC-MS analysis showed that 21 intriguing chemicals were discovered. Two significant phytoconstituents in the methanol extract of C. aerea include butanoic acid and palmitic acid. These two substances were examined using an in silico methodology against the NS5 methyltransferase protein and demonstrated good glide scores and binding affinities. Finally, we looked into the morphological damage and fluorescent emission of third instar Ae. aegypti larvae treated with CA-Mn-SPIONs. Fluorescent emission is consistent with ROS formation of CA-Mn-SPIONs against Ae. aegypti larvae. The present study determines that the key variables for the successful development of new insecticidal agents are rooted in the eco-compatibility and the provision of alternative tool for the pesticide manufacturing sector.


Assuntos
Aedes , Clorófitas , Dengue , Inseticidas , Nanopartículas Metálicas , Alga Marinha , Infecção por Zika virus , Zika virus , Animais , Feminino , Prata/química , Nanopartículas Metálicas/química , Mosquitos Vetores , Nanopartículas Magnéticas de Óxido de Ferro , Inseticidas/química , Dengue/prevenção & controle , Larva , Extratos Vegetais/farmacologia , Folhas de Planta/química
11.
Bioorg Med Chem Lett ; 101: 129646, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38331225

RESUMO

Dengue fever is an infectious disease caused by the dengue virus (DENV), an RNA Flavivirus transmitted by the mosquitoes Aedes aegypti and Aedes albopictus widespread in tropical, subtropical and also temperate regions. Symptoms range from a simple cold to a severe, life-threatening haemorrhagic fever. According to the WHO, it affects around 390 million people per year. No antiviral treatment for DENV is available, and the Dengvaxia vaccine is only intended for people over 9 years of age who have contracted dengue one time in the past, and shows serotype-specific effectiveness. There is therefore a crying need to discover new molecules with antiviral power against flaviviruses. The present study was carried out to evaluate the anti-DENV activities and cytotoxicity of triazenes obtained by diazocopulation. Some triazenes were highly cytotoxic (16, and 25) to hepatocarcinoma Huh7 cells, whereas others displayed strong anti-DENV potential. The antiviral activity ranged from EC50 = 7.82 µM to 48.12 µM in cellulo, with a selectivity index (CC50/EC50) greater than 9 for two of the compounds (10, and 20). In conclusion, these new triazenes could serve as a lead to develop and optimize drugs against DENV.


Assuntos
Aedes , Vírus da Dengue , Dengue , Animais , Humanos , Dengue/tratamento farmacológico , Antivirais/farmacologia
12.
Sci Rep ; 14(1): 3508, 2024 02 12.
Artigo em Inglês | MEDLINE | ID: mdl-38346996

RESUMO

The management of mosquito resistance to chemical insecticides and the biting behaviour of some species are motivating the search for complementary and/or alternative control methods. The use of plants is increasingly considered as a sustainable biological solution for vector control. The aim of this study was to evaluate the biological effects of the essential oil (EO) of Lippia alba harvested in Abidjan (Côte d'Ivoire) against Anopheles gambiae and Aedes aegypti mosquitoes. Phytochemical compounds were identified by GC-MS. Knockdown and mortality were determined according to the WHO test tube protocol. Contact irritancy was assessed by observing the movement of mosquitoes from a treated WHO tube to a second untreated tube. Non-contact repellency was assessed using a standardised high-throughput screening system (HITSS). Blood meal inhibition was assessed using a membrane feeding assay treated with EO. The EO was identified as the citral chemotype. The EO gave 100% KD60 in both species at a concentration of 1%. Mortalities of 100% were recorded with An. gambiae and Ae. aegypti at concentrations of 1% and 5% respectively. The highest proportions of females escaping during the contact irritancy test were 100% for An. gambiae at 1% concentration and 94% for Ae. aegypti at 2.5% concentration. The 1% concentration produced the highest proportions of repelled mosquitoes in the non-contact repellency tests: 76.8% (An. gambiae) and 68.5% (Ae. aegypti). The blood meal inhibition rate at a dose of 10% was 98.4% in Ae. aegypti but only 15.5% in An. gambiae. The citral chemotype of L. alba EO has promising biological effects in both species that make it a potentially good candidate for its use in mosquito control. The results obtained in this study encourage the further evaluation of L. alba EOs from other localities and of different chemotypes, under laboratory and field conditions.


Assuntos
Monoterpenos Acíclicos , Aedes , Anopheles , Repelentes de Insetos , Inseticidas , Lippia , Óleos Voláteis , Animais , Feminino , Óleos Voláteis/farmacologia , Aedes/fisiologia , Mosquitos Vetores , Côte d'Ivoire , Inseticidas/farmacologia , Repelentes de Insetos/farmacologia , Controle de Mosquitos/métodos
14.
BMC Biol ; 22(1): 22, 2024 Jan 29.
Artigo em Inglês | MEDLINE | ID: mdl-38281940

RESUMO

BACKGROUND: Hematophagous mosquitoes transmit many pathogens that cause human diseases. Pathogen acquisition and transmission occur when female mosquitoes blood feed to acquire nutrients for reproduction. The midgut epithelium of mosquitoes serves as the point of entry for transmissible viruses and parasites. RESULTS: We studied midgut epithelial dynamics in five major mosquito vector species by quantifying PH3-positive cells (indicative of mitotic proliferation), the incorporation of nucleotide analogs (indicative of DNA synthesis accompanying proliferation and/or endoreplication), and the ploidy (by flow cytometry) of cell populations in the posterior midgut epithelium of adult females. Our results show that the epithelial dynamics of post-emergence maturation and of mature sugar-fed guts were similar in members of the Aedes, Culex, and Anopheles genera. In the first three days post-emergence, ~ 20% of cells in the posterior midgut region of interest incorporated nucleotide analogs, concurrent with both proliferative activity and a broad shift toward higher ploidy. In mature mosquitoes maintained on sugar, an average of 3.5% of cells in the posterior midgut region of interest incorporated nucleotide analogs from five to eight days post-emergence, with a consistent presence of mitotic cells indicating constant cell turnover. Oral bacterial infection triggered a sharp increase in mitosis and nucleotide analog incorporation, suggesting that the mosquito midgut undergoes accelerated cellular turnover in response to damage. Finally, blood feeding resulted in an increase in cell proliferation, but the nature and intensity of the response varied by mosquito species and by blood source (human, bovine, avian or artificial). In An. gambiae, enterocytes appeared to reenter the cell cycle to increase ploidy after consuming blood from all sources except avian. CONCLUSIONS: We saw that epithelial proliferation, differentiation, and endoreplication reshape the blood-fed gut to increase ploidy, possibly to facilitate increased metabolic activity. Our results highlight the plasticity of the midgut epithelium in mosquitoes' physiological responses to distinct challenges.


Assuntos
Aedes , Anopheles , Animais , Feminino , Bovinos , Humanos , Endorreduplicação , Epitélio , Proliferação de Células , Açúcares , Nucleotídeos
15.
Rev. Inst. Adolfo Lutz (Online) ; 83: 39267, 30 jan. 2024. graf
Artigo em Português | LILACS, CONASS, ColecionaSUS, SES-SP, SESSP-ACVSES, SESSP-IALPROD, SES-SP, SESSP-IALACERVO | ID: biblio-1552342

RESUMO

A incidência da dengue, doença viral transmitida pelo mosquito Aedes aegypti, vem crescendo em Porto Alegre ao longo dos anos, com recorde de casos registrados em 2022. Epidemias da doença parecem ocorrer de forma cíclica no município, com registros a cada três anos. Dada a influência de fatores climáticos no ciclo de vida do vetor, este trabalho buscou analisar a influência de determinantes meteorológicos na periodicidade de epidemias de dengue na capital gaúcha entre 2010 e 2022. Análises descritivas foram realizadas para averiguar o padrão dos indicadores climáticos e dos casos de dengue ao longo dos anos, ao passo que análises estatísticas foram feitas para avaliar a correlação entre os fatores climáticos e os casos autóctones registrados entre 2016 e 2022. Os resultados obtidos não apontaram padrões meteorológicos que se repetem a cada três anos e que poderiam explicar a ciclicidade observada. Ainda, não foram constatadas correlações entre temperatura, umidade e pluviosidade com casos autóctones de dengue no município, ao menos em nível quadrimestral. Para além destas análises, constatou-se expressivo aumento de casos em 2022, apesar dos esforços de controle desempenhados pelo poder público, o que aponta a necessidade de maior investimento em educação em saúde para a população. (AU)


The incidence of dengue, a viral disease transmitted by the Aedes aegypti mosquito, has been increasing in Porto Alegre over the years, with a record number of cases reported in 2022. Epidemics of the disease seem to occur cyclically in the city, with reports every three years. Given the influence of climatic factors on the vector's life cycle, this study aimed to analyze the influence of meteorological determinants on the periodicity of dengue epidemics in Porto Alegre between 2010 and 2022. Descriptive analyses were used to investigate the pattern of climatic indicators and dengue cases over the years, while statistical analyses were performed to evaluate the correlation between climatic factors and autochthonous cases registered between 2016 and 2022. The results did not point out meteorological patterns that repeat every three years and could explain the observed cyclicity. Furthermore, no correlations were found between temperature, humidity and rainfall and autochthonous dengue cases in the city, at least on a four-monthly basis. Beyond these analyses, a significant increase in dengue cases was observed in 2022, despite the efforts of the public authorities to control the disease, which highlights the need for greater investment in health education for the population. (AU)


Assuntos
Clima , Aedes , Dengue , Meteorologia , Epidemias
16.
Nat Commun ; 15(1): 729, 2024 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-38272895

RESUMO

Aedes aegypti is the main vector of several major pathogens including dengue, Zika and chikungunya viruses. Classical mosquito control strategies utilizing insecticides are threatened by rising resistance. This has stimulated interest in new genetic systems such as gene drivesHere, we test the regulatory sequences from the Ae. aegypti benign gonial cell neoplasm (bgcn) homolog to express Cas9 and a separate multiplexing sgRNA-expressing cassette inserted into the Ae. aegypti kynurenine 3-monooxygenase (kmo) gene. When combined, these two elements provide highly effective germline cutting at the kmo locus and act as a gene drive. Our target genetic element drives through a cage trial population such that carrier frequency of the element increases from 50% to up to 89% of the population despite significant fitness costs to kmo insertions. Deep sequencing suggests that the multiplexing design could mitigate resistance allele formation in our gene drive system.


Assuntos
Aedes , Tecnologia de Impulso Genético , Inseticidas , Infecção por Zika virus , Zika virus , Animais , Sistemas CRISPR-Cas/genética , Aedes/genética , RNA Guia de Sistemas CRISPR-Cas , Infecção por Zika virus/genética , Zika virus/genética
17.
J Biomed Sci ; 31(1): 8, 2024 Jan 17.
Artigo em Inglês | MEDLINE | ID: mdl-38229040

RESUMO

BACKGROUND: Chikungunya virus (CHIKV) has reemerged as a major public health concern, causing chikungunya fever with increasing cases and neurological complications. METHODS: In the present study, we investigated a low-passage human isolate of the East/ Central/South African (ECSA) lineage of CHIKV strain LK(EH)CH6708, which exhibited a mix of small and large viral plaques. The small and large plaque variants were isolated and designated as CHIKV-SP and CHIKV-BP, respectively. CHIKV-SP and CHIKV-BP were characterized in vitro and in vivo to compare their virus production and virulence. Additionally, whole viral genome analysis and reverse genetics were employed to identify genomic virulence factors. RESULTS: CHIKV-SP demonstrated lower virus production in mammalian cells and attenuated virulence in a murine model. On the other hand, CHIKV-BP induced higher pro-inflammatory cytokine levels, compromised the integrity of the blood-brain barrier, and led to astrocyte infection in mouse brains. Furthermore, the CHIKV-SP variant had limited transmission potential in Aedes albopictus mosquitoes, likely due to restricted dissemination. Whole viral genome analysis revealed multiple genetic mutations in the CHIKV-SP variant, including a Glycine (G) to Arginine (R) mutation at position 55 in the viral E2 glycoprotein. Reverse genetics experiments confirmed that the E2-G55R mutation alone was sufficient to reduce virus production in vitro and virulence in mice. CONCLUSIONS: These findings highlight the attenuating effects of the E2-G55R mutation on CHIKV pathogenicity and neurovirulence and emphasize the importance of monitoring this mutation in natural infections.


Assuntos
Aedes , Vírus Chikungunya , Humanos , Camundongos , Animais , Vírus Chikungunya/genética , Proteínas do Envelope Viral/genética , Proteínas do Envelope Viral/metabolismo , Aminoácidos , Mutação , Mamíferos
18.
Sci Rep ; 14(1): 2269, 2024 01 27.
Artigo em Inglês | MEDLINE | ID: mdl-38280895

RESUMO

The mosquito species Aedes aegypti (L.) is known to act as a vector in the transmission of various diseases, including dengue fever and yellow fever. The use of insect repellents is one of precautionary measures used to mitigate the risk of these diseases in humans by reducing mosquito biting. Nepetalactone, a potent natural insect repellent primarily found in catnip (Nepeta cataria) essential oil, has emerged as a promising candidate for mosquito repellence. Here, we evaluated the potential of catnip essential oil (> 95% nepetalactone) for use as a mosquito repellent. Using a Y-tube olfactometer and human hands as an attractant, we analysed the effectiveness of catnip oil at repelling the mosquito species Aedes aegypti. We tested a range of dilutions of catnip essential oil and found that concentrations as low as 2% were effective at repelling > 70% of mosquitoes for between one and four hours after repellent application. These findings suggest that nepetalactone could potentially be used as a natural, effective alternative to synthetic mosquito repellents, thereby offering protection against vector-borne diseases.


Assuntos
Aedes , Monoterpenos Ciclopentânicos , Repelentes de Insetos , Nepeta , Óleos Voláteis , Pironas , Animais , Humanos , Repelentes de Insetos/farmacologia , Óleos Voláteis/farmacologia , Mosquitos Vetores
19.
Sci Rep ; 14(1): 2131, 2024 01 25.
Artigo em Inglês | MEDLINE | ID: mdl-38267495

RESUMO

Mosquitoes are primary vectors of pathogens impacting humans, wildlife, and livestock. Among them, the Asian tiger mosquito, Aedes albopictus, stands out as an invasive species with a global distribution, having established populations on every continent except Antarctica. Recent findings incriminate Ae. albopictus in the local transmission of several pathogens causing human diseases, including dengue, chikungunya, and Zika viruses and worm parasites as Dirofilaria. In Spain, the establishment of Ae. albopictus occurred in 2004 and it rapidly expanded, currently reaching southern provinces and creating novel epidemiological scenarios in recently invaded areas. In this study, we conducted captures of Ae. albopictus from May to November 2022 in two provinces, Granada and Malaga, situated near the current edge of the species' expanding range in Spain. The objective was to identify the primary factors influencing their captures in these regions. Mosquitoes were captured using BG-Sentinel traps baited with CO2 and BG-Lure, and miniature CDC-UV traps in five different localities. Our findings underscore the influence of both extrinsic factors, such as locality, and intrinsic factors, including mosquito sex, on the abundance of captured Ae. albopictus. A higher abundance of Ae. albopictus was observed in the Malaga province compared to localities in the Granada province. Furthermore, similar numbers of Ae. albopictus mosquitoes were captured in more urbanized areas of Granada, while the lowest counts were recorded in the less urbanized area. These results were compared to captures of another common species in the area, specifically Culex pipiens. Overall, these results represent the first monitoring of invasive Ae. albopictus in the area and are discussed in the light of the potential importance of the species as a nuisance for humans and vectors of pathogens of public health relevance.


Assuntos
Aedes , Culex , Infecção por Zika virus , Zika virus , Humanos , Animais , Estações do Ano , Espanha , Mosquitos Vetores , Ligante de CD40 , Infecção por Zika virus/epidemiologia
20.
Med Vet Entomol ; 38(1): 48-58, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37807654

RESUMO

Dengue virus (DENV) is an arbovirus that comprises four antigenically different serotypes. Aedes aegypti (Diptera: Culicidae) acts as the principal vector for DENV transmission, and vector control is crucial for dengue fever epidemic management. To design effective vector control strategies, a comprehensive understanding of the insect vector and virus interaction is required. Female Ae. aegypti ingests DENV during the acquisition of a blood meal from an infected human. DENV enters the insect midgut, replicates inside it and reaches the salivary gland for transmitting DENV to healthy humans during the subsequent feeding cycles. DENV must interact with the proteins present in the midgut and salivary glands to gain entry and accomplish successful replication and transmission. Ae. aegypti midgut cDNA library was prepared, and yeast two-hybrid screening was performed against the envelope protein domain III (EDIII) protein of DENV-2. The polyubiquitin protein was selected from the various candidate proteins for subsequent analysis. Polyubiquitin gene was amplified, and the protein was purified in a heterologous expression system for in vitro interaction studies. In vitro pull-down assay presented a clear interaction between polyubiquitin protein and EDIII. To further confirm this interaction, a dot blot assay was employed, and polyubiquitin protein was found to interact with DENV particles. Our results enable us to suggest that polyubiquitin plays an important role in DENV infection within mosquitoes.


Assuntos
Aedes , Vírus da Dengue , Dengue , Humanos , Feminino , Animais , Vírus da Dengue/genética , Dengue/veterinária , Proteínas do Envelope Viral , Poliubiquitina , Mosquitos Vetores
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA